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Quantifying Uncertainty in sea level change due to
ice-sheet evolution

Propagate uncertain
initial condition through

ice-sheet evolution model

Update prior uncertainty
using observational data
and steady state model

Characterize prior uncer-
tainty in initial condition

GOAL: Invert for unknown/uncertain ice sheet model
parameters to find ice sheet initial state that

I matches observations (e.g. surface velocity,
temperature, etc.)

I matches present-day geometry (elevation,
thickness)

I is in “equilibrium” with climate forcings (SMB)

I Significantly reduce non physical transients
without spin-up



Specifying an initial prior for uncertainty

Characterize prior uncer-
tainty in initial condition

Naive parameterization: Represent each degree of
freedom on mesh be an uncertain variable

β(x) = (z1, . . . , zndof)

Assume level of smoothness; Petra, Stadler Ghattas
square Laplace (Beltrami) operator, or use a KLE

log(β(x)) = log(β̄) +
d∑

i=1

√
λiφi (x)zi

The latter results in significant dimension
reduction, however there is choice of smoothness
(correlation length). Moreover both approaches
require an assumption of variance. What should
this be?



Our prior
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Log friction given by

log(β(x)) = log(β̄) +
d∑

i=1

√
λiφi (x)zi

Covariance kernel

Ca(x1, x2) = 0.01 exp

[
− (x1 − x2)2

0.001

]
Higher-dimension required for scientifically
justified conclusions.

However this is a good test problem.



A data informed initial condition

Update prior uncertainty
using observational data
and steady state model

Available data/measurements:

I ice extension and surface topography

I surface velocity

I Surface Mass Balance (SMB)

I ice thickness H (sparse measurements)

Fields to be estimated:

I ice thickness H (allowed to vary but weighted by
observational uncertainties)



Deterministic Inversion
Optimization problem: Find β and H that minimize

J (β,H) =

∫
Γ

1

σ2
u

|u− uobs |2 ds surface velocity
mismatch

+

∫
Γ

1

σ2
τ

|div(UH)− τs |2 ds SMB
mismatch

+

∫
Γ

1

σ2
H

|H − Hobs |2 ds thickness
mismatch

+R(β,H) regularization terms.

U : computed depth averaged velocity
H: ice thickness
β: basal sliding friction coefficient
τs : SMB
R(β) regularization term



Inverting for friction (and thickness)

Figure: (left) β only surf. vel. (middle) β,H surf. vel. (right) Obs. surf. vel.



What is the effect of shocks on transient forward
Model

Figure: (left) β only SMB (middle) β,H SMB (right) SMB from climate model



Heavily processed errors in observational data

(a) Surf. vel. err. in m/yr (b) Thickness err. in km

Uncertainty in SMB is not taken into account



Bayesian Inference

Update prior uncertainty
using observational data
and steady state model

Additive Gaussian Noise Model

d = f (z) + ε, ε ∼ N(0, Γ)

Separable I.I.D. Gaussian Prior

πpr(z) =
1

(2π)d/2
exp

(
−1

2
zT z

)
Likelihood is

π̂lhood(z) = exp

(
−1

2
(d − f (z))TΓ−1

obs(d − f (z))

)
Posterior is

πpos(z) = C−1
evidπ̂lhood(z)πpr(z)



Approximate the misfit
Compute approximation of misfit

m(z) = 1
2 (d − f (z))TΓ−1

obs(d − f (z))

Approximate a function by another different but related function or fewer
variables

m(z) ≈ g ( W T
1 z)

Function of few variables s ≤ d

Linear transformation of
parameters



Data informed subpaces
Compute active subspace of misfit

m(z) ≈ g (W T
1 z)

Active subspace computed using∫
Rd
∇xm(z)∇xm(z)Tdρ(z) = W ΛW T

Gradient of misfit

Averaged over
prior

Eigenvalue decomposition

Partition z into inactive and active variables

z = W T
1 z + W T

2 z , W = [W 1 W 2]



How Does Active subspaces work

m(z) = exp (0.7z1 + 0.3z2) .
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Sample gradient using MC

[∇m(z(1)), · · · ,∇m(z(M))]

Compute Gauss Newton approximation of
Hessian averaged over prior

C =
1

M

M∑
i=1

∇m(z(i))∇m(z(i))T

Perform eigenvalue decomposition

C = WΛWT ,

Partition z into inactive and active
variables

z = WT
1 z + WT

2 z , W = [W 1 W 2] .



Dimension reduction for Greenland
Gradients obtained using adjoint solve

m(z) =
1

2
∇f (z)TΓ−1

obs(d − f (z))

Gradients obtained Albany are w.r.t mesh DOF, must use multivariate chain rule to express w.r.t KLE vars
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Active subspaces for inference

πpos(z) ≈ C−1
evid exp(−m̂s(W T

1 z))πpr(W T
1 z)︸ ︷︷ ︸

︷ ︸︸ ︷
πpr(W T

2 z)

Approximate posterior only
in directions informed by
data

Revert to prior in un-
informed directions

Various levels of approximation can be employed

I Reduce dimension but no surrogate of misfit
I Perform MCMC in active subspace to improve mixing

I Surrogate of misfit with rotation but no dimension reduction
I Leverage increased sparsity induced by rotation,

I Surrogate of misfit and reduce dimension
I Build surrogate of subspace and perform MCMC on the surrgoate



Compare errors as accuracy of inversion increases

Laplace posterior at MAP

Quadratic PCE
over active variables

Dimension reduction via AS

Dimension reduction via KLE

Stochastic Newton on PCE

High-order PCE

Dimension reduction via AS

Dimension reduction via KLE

Stochastic Newton on steady-
state simulation model

No surrogate of
steady-state model

Dimension reduction via AS

Dimension reduction via KLE

Error in posterior

Lessons can be learned by avoiding the use of highest fidelity model.



Laplace approximation
Given Linear Model G (z) = Gz we have

y = Gz + ε

The resulting posterior is Gaussian

µpos = ΓposΓprµpr + GTΓ−1
obsy , and Γpos = (H + Γ−1

pr )−1

H = GTΓ−1
obsG

Approximate misfit over active variables using a quadratic function
obtained via compressed sensing. Using M = 733 samples and a PCE
with 20301 terms

‖m(z)− m̂(z)‖`2
ρ

‖m(z)−∑M
i=1 m(z (i))‖`2

ρ

≈ 0.981

Quadratic gradient enhanced PCE does not fit in desktop memory. Need large-scale compressed sensing tools.



Enhancing sparsity via rotation
m(z) = zTAz
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PCE
Rotated PCE

Rotated PCE, w/ Truncation

rank(A) = 5, d = 15, zi ∼ N(1/2, 1/5)

Approximate misfit with quadratic in
rotated d = 200 space

‖m(z)− m̂(W T z)‖`2
ρ

‖m(z)−∑M
i=1 m(z (i))‖`2

ρ

≈ 0.190

Approximate misfit with quadratic in
rotated and truncated d = 73 space

‖m(z)− m̂s=73(W T
1 z)‖`2

ρ

‖m(z)−∑M
i=1 m(z (i))‖`2

ρ

≈ 0.136



Draw sample z ′k from proposal Compute the approximate misfit at
proposal sample

m(z ′k) =
Nmc∑
j=1

m(W 1y k + W 2x j)

Compute acceptance ratio (assuming symmetric proposal)

γ =
exp(−g( y ′k ))πpr( y ′k )

exp(−g(y k))πpr(y k)
Determine acceptance - draw u ∼ U[0, 1]

y k+1 =

{
y ′k if γ ≥ u

y k otherwise

If accepted
zkl = W 1y k + W 2xkl , xkl ∼ πpr(x)

Similar to Likelihood informed subspace, but we do not have Hessian information



Given a Gaussian prior with mean z̄ and covariance Σprior the negative
log likelihood objective gradient and inverse Hessian are

m(z) =
1

2
rTΣ−1

noiser +
1

2
(z − z̄)TΣ−1

prior(z − z̄)

g = ∇m(z) = rTΣ−1
noise∇r + Σ−1

prior(z − z̄)

H−1 = L{V [(Λ + I )−1 − I ]V T + I}LT

where LTHmisfitL = V ΛV T

Drawing samples from proposal
using

z = z? −H−1g + H−1/2y

to increase acceptance rate in
high-dimensions

We need to implement large-scale Lanczos eigenvalue solver to extend this technique from use surrogates to operate with Albany directly



Forward Propagation of Uncertainty

Propagate uncertain
initial condition through

ice-sheet evolution model

f (x)

66 Models rusn required 1.25M CPU hours on 4km grid. NOT the finest
resolution!



Compare errors as accuracy of forward propagation
increases

Gaussian posterior push forward

Linear forward map

Push MCMC samples
through MF surrogate

Low rank multifi-
delity (MF) surrogate

Push MCMC samples through
transient simulation model

No surrogate of transient model

Error in posterior push forward

Lessons can be learned by avoiding the use of highest fidelity model.
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I Reference uH (ref): use 1000 HF runs to compute mean max
drawdown.

I Low-fidelity uL : use 2300 LF runs compute mean.

I Bi-fidelity uBN : use 1000 LF runs and N = 26 HF runs to compute
mean.

I High-fidelity uH : use 226 HF runs to compute mean.

I Cost to compute uBN , uH and uL are the same because 1 HF runs
cost 50 time more than 1 LF run.
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Multifidelity algorithm can also be used for inverse problem.



Uncertainty in predictions of sea-level change

Gaussian posterior push forward

Linear forward map

Laplace posterior at MAP

Quadratic PCE
over active variables

Dimension reduction via AS

Dimension reduction via KLE

Push MCMC samples
through MF surrogate

Low rank multifi-
delity (MF) surrogate

Stochastic Newton on PCE

High-order PCE using gradients

Dimension reduction via AS

Dimension reduction via KLE

Push MCMC samples through
transient simulation model

No surrogate of transient model

Stochastic Newton on steady-
state simulation model

No surrogate of steady-state model

No further dimension reduction

Dimension reduction via KLE

Error in uncertainty estimates for prediction of sea-level change



Forward Propagation of Uncertainty

Propagate uncertain
initial condition through

ice-sheet evolution model

Update prior uncertainty
using observational data
and steady state model

Characterize prior uncer-
tainty in initial condition

I Large-scale KLE construction (using Anasazi
from Trillinos)

I High-dimensional compressed sensing

I Compressed sensing for Gaussian random
variables

I Low-rank multifidelity algorithm (including
large scale Cholesky decomposition)

I Active subspace dimension reduction -
Implement active subspace MCMC, Likelihood
informed MCMC

I Stochastic Newton MCMC - Implement Large
scale low-rank Hessian approximation


